PKA phosphorylation of NDE1 is DISC1/PDE4 dependent and modulates its interaction with LIS1 and NDEL1.
نویسندگان
چکیده
Nuclear distribution factor E-homolog 1 (NDE1), Lissencephaly 1 (LIS1), and NDE-like 1 (NDEL1) together participate in essential neurodevelopmental processes, including neuronal precursor proliferation and differentiation, neuronal migration, and neurite outgrowth. NDE1/LIS1/NDEL1 interacts with Disrupted in Schizophrenia 1 (DISC1) and the cAMP-hydrolyzing enzyme phosphodiesterase 4 (PDE4). DISC1, PDE4, NDE1, and NDEL1 have each been implicated as genetic risk factors for major mental illness. Here, we demonstrate that DISC1 and PDE4 modulate NDE1 phosphorylation by cAMP-dependent protein kinase A (PKA) and identify a novel PKA substrate site on NDE1 at threonine-131 (T131). Homology modeling predicts that phosphorylation at T131 modulates NDE1-LIS1 and NDE1-NDEL1 interactions, which we confirm experimentally. DISC1-PDE4 interaction thus modulates organization of the NDE1/NDEL1/LIS1 complex. T131-phosphorylated NDE1 is present at the postsynaptic density, in proximal axons, within the nucleus, and at the centrosome where it becomes substantially enriched during mitosis. Mutation of the NDE1 T131 site to mimic PKA phosphorylation inhibits neurite outgrowth. Thus PKA-dependent phosphorylation of the NDE1/LIS1/NDEL1 complex is DISC1-PDE4 modulated and likely to regulate its neural functions.
منابع مشابه
DISC1-binding proteins in neural development, signalling and schizophrenia
In the decade since Disrupted in Schizophrenia 1 (DISC1) was first identified it has become one of the most convincing risk genes for major mental illness. As a multi-functional scaffold protein, DISC1 has multiple identified protein interaction partners that highlight pathologically relevant molecular pathways with potential for pharmaceutical intervention. Amongst these are proteins involved ...
متن کاملElucidating the relationship between DISC1, NDEL1 and NDE1 and the risk for schizophrenia: Evidence of epistasis and competitive binding
DISC1 influences susceptibility to psychiatric disease and related phenotypes. Intact functions of DISC1 and its binding partners, NDEL1 and NDE1, are critical to neurodevelopmental processes aberrant in schizophrenia (SZ). Despite evidence of an NDEL1-DISC1 protein interaction, there have been no investigations of the NDEL1 gene or the relationship between NDEL1 and DISC1 in SZ. We genotyped s...
متن کاملFunctional interplay between LIS1, NDE1 and NDEL1 in dynein-dependent organelle positioning.
LIS1, NDE1 and NDEL1 modulate cytoplasmic dynein function in several cellular contexts. However, evidence that they regulate dynein-dependent organelle positioning is limited. Here, we show that depletion of NDE1 or NDEL1 alone profoundly affected the organisation of the Golgi complex but did not cause it to disperse, and slightly affected the position of endocytic compartments. However, striki...
متن کاملDBZ regulates cortical cell positioning and neurite development by sustaining the anterograde transport of Lis1 and DISC1 through control of Ndel1 dual-phosphorylation.
Cell positioning and neuronal network formation are crucial for proper brain function. Disrupted-in-Schizophrenia 1 (DISC1) is anterogradely transported to the neurite tips, together with Lis1, and functions in neurite extension via suppression of GSK3β activity. Then, transported Lis1 is retrogradely transported and functions in cell migration. Here, we show that DISC1-binding zinc finger prot...
متن کاملInteraction between LIS1 and PDE4, and its role in cytoplasmic dynein function.
LIS1, a WD40 repeat scaffold protein, interacts with components of the cytoplasmic dynein motor complex to regulate dynein-dependent cell motility. Here, we reveal that cAMP-specific phosphodiesterases (PDE4s) directly bind PAFAH1B1 (also known as LIS1). Dissociation of LIS1-dynein complexes is coupled with loss of dynein function, as determined in assays of both microtubule transport and direc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 24 شماره
صفحات -
تاریخ انتشار 2011